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We study the curvature tensors and field equations in the n-dimensional SE 
manifold SEX~. We obtain several basic properties of the vectors Sx and U~ 
and then of the SE curvature tensor and its contractions, such as a generalized 
Ricci identity, a generalized Bianchi identity, and two variations of the Bianchi 
identity satisfied by the SE Einstein tensor. Finally, a system of field equations 
is discussed in SEX,, and one of its particular solutions is constructed and 
displayed. 

1. INTRODUCTION 

In Appendix II to his last book Einstein (1950) proposed a new unified 
field theory that would include both gravitation and electromagnetism. 
Although the intent of this theory was physical, its exposition was mainly 
geometrical. It may be characterized as a set of geometrical postulates for 
the space-time X4. Although the geometrical consequences of these postu- 
lates were not developed very far by Einstein, Hlavat~ (1957) gave its 
mathematical foundation for the first time characterizing Einstein's unified 
field theory as a set of geometrical postulates for X4. Since then the 
geometrical consequences of these postulates have been developed very far 
by a number of mathematicians and physicists; among them Hlavat~'s 
contributions are the most distinguished. 

Generalizing X4 to n-dimensional generalized Riemannian space X~, 
Wrede (1958) studied the Principles A and B given below. But this solution 
of our (2.7) is not surveyable, probably due to the complexity of the higher 
dimensions. Mishra (1959) and Chung et al. (1981, 1985a,b) also investigated 
the n-dimensional generalization of principle A, using n-dimensional recur- 
rence relations. However, so far as Principle B is concerned, the solution 
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of  the system (2.7) has not been obtained in a surveyable tensorial form, 
due to the generality of  the higher dimensional space. 

Recently Chung et al. (to appear) introduced the concept of n- 
dimensional SE manifold, denoted by SEX,,  imposing the semisymmetric 
condition (2.24) on Xn, and found the unique representation of the Einstein 
connection in a beautiful and surveyable form, (2.25). Chung et aL (1985a,b) 
obtained many results concerning SEX,,  such as properties of the submani- 
fold and the hypersubmanifold of SEX,  and generalized fundamental 
equations on the hypersubmanifold. 

The purpose of the present paper is to study the properties of curvature 
tensors and the field equations in SEX, and to display a particular solution 
of the field equations. This paper contains seven sections. Section 2 intro- 
duces some preliminary notations, concepts, and results. Section 3 deals 
with several basic vectors in SEX,.  The next two sections are devoted 
exclusively to the properties of the SE curvature tensor and its contracted 
SE curvature tensors. In the last two sections we discuss the field equations 
in SEXn and construct a particular solution of  them. 

All considerations in the present paper are for general n > 1, unless 
otherwise stated, and for all possible classes and indices of  inertia. 

2. PRELIMINARIES 

This section is a brief collection of basic concepts, results, and notations 
needed in subsequent considerations. The detailed proofs are given in 
Chung et al. (1963, 1981, 1985a,b and to appear) and Hlavat~ (1957). 

2.1. Generalized n-Dimensional Riemannian Manifold 

Let X~ be a generalized n-dimensional Riemannian manifold referred 
to a real coordinate system x ~, which obeys coordinate transformations 
x ~ --> x ~' for which 

Det(0x '~ # 0  (2.1) 
\ o x /  

The space X.  is endowed with a general real, nonsymmetric tensor gA., 
which may be split into a symmetric part hA. and a skew-symmetric part kx. ,  3 

gAt* = hA~ + k~, (2.2) 

where 

g = Det(gx,)  # 0, b = Det(hx,)  # 0 (2.3) 

3Throughout the present paper, Greek indices are used for the holonomic components of 
tensors in X,,. They take the values 1,2, . . . ,  n unless stated otherwise and follow the 
summation convention. 
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We may define a unique tensor h A" by 

v ha~h ~ = 3~, (2.4) 

The tensors ha. and h a" will serve for raising and~or lowering indices of 
tensors in X~ in the usual manner. In virtue of (2.3) we may also define a 
unique real tensor *ga" by 

g ~ . . g ~  = g.~ .g~A = 6~ (2.5a) 

which may be decomposed into 

* g ~  = *h ~ + * k ~ ;  *h A~ = *g(~), *k ~ = *g(~) (2.5b) 

The space X.  is assumed to be connected by a real general connection 
F~. with the following transformation rule: 

Ox ~' { Ox~ Ox ~ ~ 02x ~ '~ 
r ~ : . , -  Ox '~ \~xX, ~ Ft3,+ Oxx--= c?---x~,; ] (2.6) 

2.2. Einstein's n-Dimensional  Unified Field Theory 

Einstein's n-dimensional unified field theory, is based on the following 
three principles as indicated by Hlavat2? (1957): 

Principle A. The algebraic structure is imposed on a generalized n- 
dimensional Riemannian manifold X~ by a general real tensor gx. defined 
by (2.2). 

Principle B. The differential geometric structure is imposed on' X.  by 
the tensor gx. by means of the Einstein connection F~,. defined by a system 
of Einstein equations 

O..g~. - F ~,og,~. - F,~. g;,,~ = 0 (2.7a) 

or equivalently 

D.g~. = 2S2 .g~  (2.7b) 

where D~ denotes the symbol of the covariant derivative with respect to 
F~. and 

v v 1 v v S . .  = F ( . ~  = ~(ro~. - F.~,) (2.8) 

Principle C. In order to obtain ga. involved in the solution for F~. in 
(2.7), certain conditions are imposed, which may be condensed to 

S~ = S ~  = 0, R(~A) = d(~ Yx), R( .~  = 0 (2.9) 

where YA is an arbitrary vector, and 

R~,~ = 2(0~.FIAIo. ~ F~FIAIo)) , R.~ - R ~  (2.10) 



1086 Chung and 

The following quantities will be used in our further considerations: 

t = Det(ka~) (2.11) 

g = g / b ,  k = t / b  (2.12) 

(~ =/~, (P)k~x=(P-1)k~k~ ( p =  1 ,2 , . . . )  (2.13) 

Ko = 1, Kp = k ~ 2 , k ~ . .  �9 k~) (p = 1, 2 , . . . )  (2.14) 

Kp = Ko+ K~ +.  �9 �9 + Kp (2.15) 

It is shown in Chung et al. (1981) that the following relations hold 
between the quantities introduced in (2.3) and (2.11)-(2.15): 

K , = k  i f n i s e v e n :  K p = O  i f p i s o d d  (2.16), 

9 = b/(~ or g = / ~ .  (2.17) 

On the other hand, equations (2.7) can be split into two equations 
(Hlavat2~, 1957) 

D, oh~, = 2S~,(~,ga )~ (2.18a) 

D, ok~  = 2S~(~gx)~ (2.18b) 

from which we also have 

D, oh ~ = -2S~(,,gt3)z, ht3~h ̀~A (2.18c) 

A procedure similar to Christotiel's elimination applied to (2.18a) yields 
that if equations (2.7) admit a solution F~,, it must be of the form (Hlavat~, 
1957) 

F ~  = {~,} + S ~  + U~, (2.19) 

where 

(2.20) 

n - o -  

K(f"+P-f)k~ = 0  ( p = 0 ,  1, 2 , - . . )  (2.21) 
f = O  

0, if n is even (2.22) 
o-= 1, if n is odd 

and {A~} are Christoffel symbols defined by h~,. 
Using the concepts of  basic vectors and scalars, Chung et al. (1985a,b) 

derived the following recurrence relation: 
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Using (2.21), it has also been shown (Chung et al., 1981, 1985a,b) that the 
n-dimensional representations of the tensors *h ~ . .  , *k x~.. , *h~,, and *ka~ are 
given by 

. h ~  = 1 ~1 - (Ko (P)k ~ + K2 (P-2)kA~ +" �9 �9 + Kp-2 (2)k~ + Kph ~ )  (2.23a) 
g p~O 

,kX~, -- 1 ~ (K ~ (p_,)kX ~, q- K2 (p_3)kX ~ + ' "  . + K,-4 (3)k*~ + Kp-2 U '~) 
g p = 2  

(3) *h~. = h~. - (2 )kx t , ,  *k~. = k~, - k~. 

2.3. n-Dimensional SE Manifold SEX. 

(2.23b) 

(2.23c) 

A connection F~. is said to be semisymmetric if its torsion tensor S~. 
is of the form 

S~, = 26~\X~) (2.24) 

for an arbitrary vector X, .  A connection that is both semisymmetric and 
Einstein is called an SE connection, and a generalized n-dimensional 
Riemannian manifold X,  on which the differential geometric structure is 
imposed by ga, through a SE connection is called an n-dimensional SE 
manifold, denoted by SEX. .  

It has been shown (Chung et al., to appear) that there always exists a 
unique n-dimensional SE connection F~u of the form 

F ~  = {x~} + 2k~\X~,)+ 28~ X~.) (2.25) 

for a unique vector Xx given by 

1 
- *h ~ V~k~ (2.26) Xx n - 1  

where Vx is the symbolic vector of the covariant derivative with respect 
to {L}. 

3. THE VECTORS X~, S~,, AND U• 

Agreement 3.1. Our further considerations in the present paper are 
exclusively restricted to the n-dimensional SE manifold SEXn, n > 1. 

In this section we investigate several properties of  the vector X~ given 
by (2.26) and the vectors 

Sa -- S ~ ,  U~ = U ~  (3.1) 

The following theorems are needed in our further considerations. 
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Theorem 3.2. In SEXn the vectors S~ and Ua are given by 

S, = (1 - n)Xa (3.2) 

Uh = k~X~ =�89 In g (3.3) 

Proof. Putting/z = v in (2.24), we have (3.2). Similarly, the first relation 
of (3.3) may be obtained by putting/~ = v in 

U ~  = 2k(\X,)  (3.4) 

which is a result of (2.20) and (2.24). In order to prove the second relation 
of (3.3), multiply by .gag on sides of (2.7a) and make use of (2.5a) to get 

0~ In 9 - F ~ , o - F ~ .  = 0  (Y5a) 

or 

O~ In g+2S~ - 2F~,. = 0 (3.5b) 

On the other hand, in virtue of  the classical result 

{~,} = �89 In I) (3.6)  

we have 

r ~  = ~0o~ In D+ S,o + U~ (3.5c) 

The second relation of (3.3) immediately follows from (3.5b) and (3.5c). �9 

Remark 3.3. In virtue of  (3.3) and (3.4), we note that 

X h = 0  implies SA=0 and U a = 0  

Now, introduce the following abbreviation for an arbitrary real 
vector YA : 

Then, since 

we have 

(p) 
Yh = (P)k~' V~ (p = 0, 1, 2,- �9 ") (3.7a) 

(P)kA~ = ( -1 )  p (P)k~x, 

(p) 
Y"= ( - 1 )  p (P)k~ Y~ (p = 0, 1, 2," �9 .) (3.7b) 
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and in particular 
(o) (o) 
Y,= Yx, Y~= Y~ 

Employing this abbreviation, we have the 
theorems, which will be needed in our subsequent considerations: 

Theorem 

(3.7c) 

following sequence of 

3.4. In SEX~ the following relations hold: 

(p) (p--l) (p) (p--l) 
Xx= U~, S ~ = ( 1 - n )  U~ ( p = 1 , 2 , . . . )  (3.8a) 

(p) (p- l )  (p) (p- l )  
X " =  - U", S" = ( n -  1) U ~ (3.8b) 

Proof. In virtue of (2.13), (3.2), (3.7), and the skew symmetry of kA,, 
our assertions in this theorem are immediate consequences of (3.3). �9 

Theorem 3.5. In SEX, the following relations hold: 

(p) (q) (p) (q) 

U~X~=U~S~=O i f p + q + l i s o d d ( p , q = O ,  1 , 2 , . . . )  (3.9a) 

In particular, we have 

(p) (p) 

u , , x  " =  u , ~ s  ~ = 0  i f p = O , 2 , 4 , .  �9 �9 ( 3 . 9 b )  

Proof. The relations (3.7a), (3.7b), and (3.8a) give 

(p) (q) (p+l) (q) 
UaX am X,~ X a = ( - 1 )  q (Ptq+l)ka~XaX~ (3 .10)  

Our assertion (3.9a) follows from (3.10) in virtue of the skew symmetry of 
k~  and (3.2). The relation (3.9b) is an immediate consequence of(3.93). �9 

Theorem 3.6. In SEX~ the following relations hold: 

(1) 
u L  x~ = 2 u~x , , )  = 2 x ~ x ~ )  (3.1 la) 

(1) 
U~,~S~ = 2 ( 1 - n ) U ( x X , ) = 2 ( I - n ) X ~ a X ~ )  (3.11b) 

(1) (2) 
U ~  Us = 2 U~aX~) = 2X(xX~) (3.1 lc) 

Proof. In virtue of (3.4) and (3.7a), we have 

(p) (p) (p+l) 
U~Y,~=2k~xX,)Y,~=2Y(xX,) (p=O, 1, 2 , - . . )  (3.12) 

Our assertions (3.11) can be easily shown from (3.12). �9 
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Theorem 3. 7. 
relation: 

(p) 
In SEX~ the vector XA satisfies the following recurrence 

n - o -  ( n + p - f )  

Y~ Ks XA =0  ( p = 0 , 1 , 2 , . . . )  (3.13) 
f=o 

Proof. Multiplying by X~ on both sides of (2.21) and making use of 
(3.7a), we have (3.13). �9 

Theorem 3.8. In SEX~ the following relations hold: 

DAX~ = V AX~ - 2 U(AX~) (3.14a) 

D(AX~) = V(AX~) = O(AX~) (3.14b) 

(1) 
V(A U.) = 0, D(AU~)=2U(xX~) =2X(AX~) (3.14c) 

Proof. In virtue of (2.25) and (3.12), we have 

D(A Y.) = O(. Y.)+ 2 Y<AX.) (3.15) 

for an arbitrary vector Yx. Our assertions follows easily from (3.3) and 
(3.15). �9 

4. THE n-DIMENSIONAL SE CURVATURE TENSOR 

This section is devoted to the study of the n-dimensional SE curvature 
v tensor R ~ x  defined by the SE connection Fx,  and of some identities 

involving the tensor R~lx. 
Having found the SE connection in the form (2.25), as shown in the 

following theorem, we may derive the representation of the SE curvature 
tensor R~lx as a function of XA, gA,, and their first two derivatives by simply 
substituting (2.25) into (2.10). 

Theorem 4.1. The n-dimensional SE curvature tensor R,~x in SEX, is 
given by 

where 

t o g a  -'I- ~op.A 

H.,.~ - 20(.{lal.} + 2{.(.}{IAI. )} 

v ~ + ~ + 
1 

(4.1) 

(4.2a) 

(4.2b) 

- 2g(~oUu)Xa 2g(~X.)U~ (4.2c) 
2 
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Proof Substitute (2.25) into (2.10) and make use of (4.2a) to obtain 
/J ~, .jl_ /J l~ v R,o~, = 2B(~({~)A} X,o)3~ - 30~)X~ + U,,);~) 

+ 2 ( { Z . }  + - xo3(  + + - 32)x  + 

= H ; , ~  + 23~Ou, Xo~ ) + 2(3(%0o~)XA - 3(%{0,~ }X~) 

+ 2(0(~ U;)x + {a(%} U~)~ + {~(%} U~,)A) 

+ 2(6(~X~o)X~ - X~3(~ U~,)~ + U;(~, U,~),) (4.3) 

Clearly the sum of the second, third, and fourth terms on the right-hand 
side of (4.3) is R~,~. On the other hand, we have 

1 

v ~, v g~, = 3 .  - k .  (4.4a) 

* h~, ~ -- _~,S ~ - (2)kv..t~ (4.4b) 

where use has been made of (2.2) and (2.23c). Now, substituting (3.4) into 
the fifth term on the right-hand side of (4.3) and making use of (4.4), we 
note that the fifth term is equal to R ~ a  in virtue of (4.2c). Hence our proof 
is completed. �9 

The SE curvature tensor R ~ x  obeys the following Theorem 4.2. 
identifies: 

v R~o.x = R(~,)a (4.5) 

R(~,a) = 43(\a,X~,) (4.6) 

Proof Equation (4.5) follows immediately from (2.10). In order to 
prove (4.6), we use (4.1) to obtain 

In virtue of (4.2) we have 

(4.7) 

H(%~) = R(%,,)= 0, R(%~) = 48(%a,~X~) (4.8) 

The identity (4.6) follows by substitution of (4.8) into (4.7). 
The following two theorems are immediate consequences of Hlavatg's 

results (Hlavatg, 1957, p. 129): 
P 

2D(,,)D~)T,~I,: : : ,~ = -  Y 
a = l  

q 

+ E  
/3=1 

+ 2S~,D~T~,,:::~,, (4.9) 
u 

D(eR~)u)a = -2S(e~,R,)r (4.10) 

which hold on a manifold to which an Einstein connection is connected. �9 

T p ! ,  �9 - v I ~:P~ + I " " " / "  l /  

~,, .... R ~: 
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Theorem 4.3. (Generalized Ricci identity in SEX~.) The SE curvature 
tensor Rg,a in SEX~ satisfies the following identity: 

P 
1) . - - / /  - -  1 a - I  a + l  p a 2 D ,  ,oD , T x' ,~ = ~ . . . . . .  e . . . . . . .  t t z )  ~," " '~q l h t " ' h q  

c t = l  

q 

- 4X(,oD,)T~xl,:::~X~q (4.11) 

Proof Making use of (2.24), we see that (4.11) is a direct consequence 
of (4.9). �9 

Theorem 4.4. (Generalized Bianchi identity in SEX~.) The SE curvature 
tensor R,~,x in SEX~ satisfies the following identity: 

l ,  ~, t ,  

D(eR. , ,nx  = -4X(eH,,~)x + M(e~)x (4.12) 

where 

~Me~.;; " =(6xXeO,oX.)' + Xe8,,,V,~X.~ + X e V ~ U . t ) + g e X ,  oU,~X ~ ~ (4.13) 

P r o o f  In virtue of (2.24) and (4.1), the identity (4.10) may be 
rewritten as 

D(eR..)a = -2S(~ H~)~A - 2S(e.R.)~ - 2S(e.R~)~x 

u R u u = - 4 X ( " H " e ) x  - 4X(e  i o,.)x - 4X(eR,o.)x (4.14) 

In virtue of (4.2b) the second term on the right-hand side of (4.14) may be 
expressed in the form 

X(eR~,na" =2(6xX(eO,,Xo~ + X(eS ,V ,o )X; ,  + (4.15a) 

The relation (4.2c), together with (4.4a), enables us to write the third term 
on the right-hand side of (4.14) as follows: 

X(eR~,~)a = - 2 (  8(%X, oUt,) - k(%X, oU~,))Xx 

= - 2 g ( ~ X ,  oU~,)Xa (4.15b) 

We now substitute (4.15a) and (4.15b) into (4.14) and make use of (4.13) 
to complete the proof of (4.12). �9 
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5. THE CONTRACTED SE CURVATURE TENSORS 

This section is devoted to the study of the contracted n-dimensional 
SE curvature tensors of  the SE connection F:~ and of some identities 
involving them. 

The tensors 

R.~ = R : . s .  V,o. = R;.Ot (5.1) 

are called the first and second contracted SE curvature tensors of the SE 
connection F~,.. respectively. They also appear  as functions of  gA. and its 
first two derivatives. 

Theorem 5.1. The  second contracted SE curvature tensor V.). in SEX. 
is a curl of  the vector S,.  That is. 

V, og = 20(,oS,) (5.2) 

Proof  Putting A = u = a in (4.1), we have 

ROt 
1 P" 

In virtue of  (3.2), (3.14b), and (4.4), the relations (4.2) give 

R = 0  

(5.3) 

R~.~ = 2nO(.X,o~ + 2V<o)X~)= 2(1 - n)O(,oX.~ = 20(~,S.) 
1 

which together with (5.3) proves (5.2). �9 

Theorem 5.2. The first contracted SE curvature tensor R.~ in SEX~ is 
given by 

where 

R.A = H.x + 2a(.Xx ) + V~ Tx - V ~ U~h 

+ (1 - n - 2 K 2 ) X . X x  + U.UA -2U<~Sa) (5.4) 

H.x = H~.A (5.5a) 

T L  = s L  + u~,, ,  T~ = T L  = S~ + U~ (5.5b) 

Proof Putting ~o = v = a in (4.1) and making use of (5.5a), we have 

2 e ~  R . ~ = H . A + R ~  A+ ~.a (5.6) 1 Ix 
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Now, the relation (4.2b), together with (3.2), (3.14b), and (5.5b), gives 

R:~., = 2a(~X,) + (1 - n)V~.X, + VgU,  - V~ U~,  
1 

o~ 
= 2a(~X,) + V~ T, - V~ U ~  (5.7a) 

On the other hand, in virtue of  (2.14), (3.2), (3.7a), (3.8a), and (4.4), it 
follows from (4.2c) that 

t~  cr o t  ~ oL R , , x  = 2(~(~ - ( 2 ) k ~ ) X , ~ ) X ,  + 2(6(~ - k(~) U , ) X ,  + 2(6(~ - k ( , ) X , ) U ,  
2 

= (1 - n - 2 K 2 ) X ,  Xa - 2  U ( , S , ) +  U~,U, (5.7b) 

Our assertion follows immediately from (5.6), (5.7a) and (5.7b). �9 

R e m a r k  5.3. In virtue of  (2.26), (3.2), (3.3), and (3.4), we note from 
(5.4) that R , ,  is a function of  gx, and its first two derivatives. 

Theorem 5.4. I f  X,  is not a gradient vector, the tensor R~,, is symmetric 
only when n = 3. 

Proof  The expression (5.4) may be reWritten as 

R~, = H~, - 2Vt~X,) + (3 - n )V~X, + V g U, - V,  U~, 

+ (1 - n - 2 K 2 ) X , X ,  + U,U~ - 2  U(~SA) (5.8) 

where use has been made of  (3.14b) and (5.5b). Since V~Ux = V , U ,  in 
virtue of  (3.14b), we have 

Rt~, ) = 0 ~ (3 - n)V(,X,)  = (3 - n)O(~Xx) = 0 

from which our assertion follows. �9 

R e m a r k  5.5. In Theorem 5.4 we excluded the case a( ,Xx)= 0, because 
the assumption that the vector X ,  is not a gradient vector is necessary in the 
discussion of the field equations in X, .  

Theorem 5.6. The contracted SE curvature tensors in SEX,  are 
related by 

2R(~a) = 40(~Xx) + V , ,  (5.9) 

Proof. In virtue of  (3.2), (3.14b), (5.2), and (5.8), we can prove relation 
(5.9) in the following way: 

2R(~,) = 2(3 - n )O(~X, ) = 2(1 - n )O(~.X~ ) + 40(~X~ ) 

= 2a(~,S,)+40(~X~) = V~, +4a(~,X,) �9 
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R e m a r k  5. 7. An a l te rna t ive  p r o o f  o f  T h e o r e m  5.6 may  be o b t a i n e d  by  
pu t t ing  A = v = a in (4.6) to der ive  

V,o~ - R~,,o + Ro~, = 40(,oS~) + 40(,oX~,) 

Our  next  task  is to' ob t a in  a genera l i za t ion  o f  the  classical  iden t i ty  

V,~E;=O (5.1o) 
where  4 

v = t . i ' v  1 R V l L  1 (5.11) H = h"t3H~t3, E ~  , , ~ , - ~ , ~ , ~ ,  

The  quant i t ies  

v l t~V 1 R V l ~  (5.12) R = h~t~R~t3, G~ = . .~  - ~ , ~ . .  

will be refer red  to as the  S E  curvature invariant  and  S E  Einstein tensor o f  

S E X , ,  respect ively .  Fi rs t  we need  the fo l lowing two theorems.  

Theorem 5.8. In  S E X ,  we have 

D, oh x~ = - 2 X ( X g ~ )  + 2X ,  oh x ~ (5.13a) 

D,~h ~ = S a + U ~ (5.13b) 

Proo f  In vir tue o f  (2.18c), (2.24), and  (4.1a), we can prove  the re la t ion  
(5.13a) in the  fo l lowing  way:  

,y 
D,oh ~ -2(6 ,oX(~ *- ~v , ,t3~,_~x = - A,oo(~Jgt3)vn n 

= 2(-X(~gt3),o + Xo, h~t3 )ht3~h ~x 

= - 2 X  (x (6~) - k~ )) + 2Xo, h A~ 

= - 2 X ( A g ~  + 2 X ~ h  x~ 

The re la t ion  (5.13b) is a d i rec t  consequence  o f  (5.13a). []  

Theorem 5.9. In  S E X ,  we have 

R = H + V , ~ T  ~ - V ~ U ~ + ( 1 - n - 2 K 2 ) X +  U (5.14a) 

D ~ R ~ = V ~ R , , + ( U ~ - n X , ~ ) R , + R X ~ , -  ~ ~ U ~ R ~  ~ ~ (5.14b) 

where  

x = x . x  ~, u =  u ~ u  ~ (5.14c) 
4The tensor E~ is called the Einstein tensor. This tensor is of fundamental importance because 
its divergence vanishes identically in virtue of (5.10). 
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Proof. The representation (5.14a) follows from (5.4) in virtue of (3.9), 
(3.14b), (5.11), and (5.14c). The relation (5.14b) may be shown in the 
following way in virtue of (2.24), (3.2), and (5.5b): 

D . ~ R .  = O, ,R .  + F /3,~R~ - F . . R / 3  

= V ~ R ~  + T/3R~ /3 ~ /3 

= V~R~ + (T~ ~ - X ~ ) R ~ + R X ~  - U~R~/3 

= V . R ~  + ( U~ - n X ~ ) R .  + R X .  - ~ U.~R/3/3 

Now we are ready to prove the following generalization of (5.10). �9 

Theorem 5.10a. (A variation of the generalized Bianchi identity in 
SEX~.) The SE Einstein tensor G~ satisfies the following identity in SEX~: 

ct D , ~ G .  = P~ - I o ~ M  (5.15a) 

where 

P~ V , ~ ( R ~ - H ~ ) + ( U , ~ - n X , ~ ) R ~ + R X ~ -  /3 " = ~ U ~ R / 3  (5.15b) 

M =V~T ~ -V~ U~/3 + ( 1 - n -  2K2)X + U (5.15c) 

Proof. The proof of (5.15a) follows easily from (5.12) in virtue of(5.10), 
(5.14), (5.15b) and (5.15c). �9 

R e m a r k  5.11. Several earlier authors (e.g., Bose 1953; Einstein, 1955; 
Lichnerowicz, 1955; Schr/Sdinger, 1949; Winogradski, 1956) tried to general- 
ize (5.10) on a manifold to which an Einstein connection is connected, but 
their results are cumbersome. Note that our result (5.15) in the above 
theorem, which holds in SEXn, is a very handy and surveyable tensorial 
form. 

Theorem 5.10b. (A variation of the generalized Bianchi identity in 
SEXn.) The SE Einstein tensor G~ satisfies the following identity in SEXn: 

a a a ~oA /3 = - h D~ (R ,o . (~ . )h  ) 2D~G~, X Q ~  U R ~ , ~ - 2 R X ~ - 3 h  M~,o~>x + o~ 4/3 

(5.16a) 

where 

~ - R ~ k ~  (5.16b) Q ~  = (3 - n)R~,~ + R , ~  - 8E~,,~ - R , ~ , k ~  
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Proof The proof  of  this assertion is based on the generalized Bianchi 
identity (4.12). It may be written in the form 

- -  D ~ ~(R,o,,xh )+ DtoR~o + D~,R~,ox 

_ ~ + ~ h ~ ,  --12X(~Hto~)x 3M(~,o,)~-2D~(Rto~(A~) ) 

If we contract for v and ~ and multiply by h ~A on both sides of the above 
equation, we find 

- h'~ ( R o ~  h ~t3) _ h to~DtoR~,x + h ~ A 

= - 1 2 h  X(~Ho,~)~+.,, ~,~(~,o~)~,-2h~'~D~(Rto~(~,~)h ) (5.17) 

In virtue of  (5.1), (5.12), and (5.13), the terms on the left-hand side of (5.17) 
can be rewritten as 

- hto~Dt3(R,o~,~Ah ~t3) = -Dt~(R,o~Ah"t3h "x) + Rto~ah~D~(h "~) 

= - D ~ R ~  ~ ,o +2R,o.,~xh ( - X  g~+Xeh ~ 

R~:,k~) (5.18a) = - D ~ R ~ , + 2 X ~ ( R ~  - V ~ -  t~ 
t o  A t o  ~t_ t o  A - h  D, o R ~ = - D ,  oR~, R~(Do, h ) 

ot ot = -D,~R~,+(S" + U )R~,~ (5.18b) 

h "aD~R,ox = D~R - R,o~D~h'~ 

= D ~ , R + 2 X " ( R ~ . - R . ~ k ~ ) - 2 R X .  (5.18c) 

On the other hand, the relations (5.5a) and (5.11) allows the first term on 
the right-hand side of (5.17) to be expressed in the form 

toA /3 a - 1 2 h  X(,Hto~,)~ = 8X~E~, (5.18d) 

We now substitute (5.18) into (5.17) to complete the proof  of (5.16). �9 

Remark 5.12. Comparing the expressions (5.15a) and (5.16a), we note 
that the former is more refined, because the last two terms of (5.16a) are 
not surveyable. 

6. FIELD EQUATIONS IN SEX, 

By field equations we mean a set of partial differential equations for 
g~ .  In the present section and in what follows we are concerned with the 
geometry of field eqations in SEX, and not with thefr physical applications. 

Chung et al. (1987) found the unique SE connection F ~  in SEX, as 
a function of g~, in the form (2.25). Substituting it into (2.10), we saw 
in the previous two sections that the SE curvature tensor R~,~A together 
with its contracted curvature tensor R~,~ appear as a function of g~,. In 
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order to obtain the tensor gAz with which we started in dealing with 
Principles A and B, we prescribe the following conditions for it in terms 
of R,x (see Remark 6.2): 

R(~)=O(~YA) (6.1a) 

R(~x)=0 (6.1b) 

where YA is an arbitrary vector. Clearly, (6.1a), (6.1b) represent a system 
of n 2 differential equations of the second order for gA,. 

Therefore, our unified field theory in the n-dimensional SE manifold 
SEX, is governed by the following set of equations: n 3 equations (2.7) 
under the condition (2.24), which determine the unique SE connection F~,,, 
and n 2 field equations (6.1) for n 2 unknowns ga. (see Theorem 6.5, which 
states that the unknowns Ya are uniquely determined in SEX,). 

Remark 6.1. We note that in the unified field theory of SEX, the 
conditions (6.1) are of a purely geometrical nature and physical interpreta- 
tion is not involved in them a priori. 

Remark 6.2. Einstein suggested several different sets of field equations 
in his four.dimensional unified field theory. His final suggestion consists of 
three sets of tensorial differential equations, the first of which is Sa = 0. 
Hlavat~ formulated Einstein's idea mathematically by giving 64 equations 
(2.7) determining the Einstein connection F~, and 20 field equations (2.9) 
for 20 unknowns gx, and Xx. 

Therefore, it would seem natural to follow the analogy of Einstein's 
field equations (2.9) in our manifold SEX,,  too. However, the restriction 
$~ = 0 is too strong in our unified field theory in the SE manifold SEX,, 
since this condition implies 

Xa = 0 and hence F ~  = {A~} 

in virtue of (2.25) and (3.2). Therefore, we shall not adopt (2.9) as a starting 
point, exclude the condition SA = 0, and impose the field equations in SEXn 
as given in (6.1). 

Agreement 6.3. In our further considerations we restrict ourselves to 
the conditions 

XA ~ 0 and X~ not a gradient vector (6.2) 

This restriction is quite natural in view of (6.1) and Remark 6.2. 
Our first consequence of (6.2) is the following theorem. 



Field Equations on SEX~ 1099 

Theorem 6.4. In SEX.  we have 

U ~  ~ 0 (6.3) 

Proof. Assume that U ~ - - 0 .  Then (3.4) implies that 

k~X~ + k~X~ = 0 for every A,/z, v 

In virtue of  the condition (6.2), there exists at least one fixed index ~ such 
that X~ ~ 0. Hence 

kA~Xe + ke~XA = 0 for every h and v (6.4) 

Putting h = ~ in (6.4), we have key = 0 for every v. I f  h ~ ~:, then k~ v = 0 for 
every v, since k~ = 0. Hence we have 

k ~  = 0 for every h and v 

which is a contradiction to the nonsymmetry of g ~ .  �9 

Theorem 6.5. In SEX, ,  n ~ 3, the field equation (6.1a) is satisfied by 
a unique vector YA given by 

3 - n  
Y~ = (3 - n)Xx = *h"~V~k~A (6.5) 

n - 1  

Proof. In virtue of  (5.8), we have 

R<,a) = (3 - n)O<,X~) 

from which the first equality follows. The second representation is an 
immediate consequence of (2.26). �9 

Theorem 6.6. In SEX~, n # 3, the field equation (6.1b) is equivalent to 

H~a +V(~T~)-V~U~A + (1 - n -2K2)X~Xa + U~Ux - 2  U(~S~)= 0 (6.6) 

Proof. Our assertion (6.6) is an immediate consequence of (5.4) 
and (6.1b), �9 

7. A PARTICULAR S O L U T I O N  OF (2.7) AND (6.1) 

In this final section we construct and display one particular solution 
of (2.7) and (6.1) in SEX. under the condition (2.24). 

Agreement 7.1. In our further considerations we restrict ourselves to 
the cases n >- 4. 
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Let h ~  be o f  the form 

(i~176176 ~ +1 0 0 . . .  0 

(hx~) = 

0 0 0 . . .  +1 

0 0 0 . . .  0 - 

(7.1) 

Let ~b and 0 be two arbi tary functions o f  the a rgument  

z = x "-1 - x" (7.2a) 

possessing at least the first two derivatives with respect to z and satisfying 

~b~O, 1 

In t roduce  two vectors 

A~ = ( 0 , 0 , .  �9 . ,0,  1 , - 1 ) ,  

which satisfy the condi t ions  

A ~ A  ~ = O , A , ,  V ~ = ~b , 

Then the tensor  field gA~ = h~, + kA~ with 

k~ = 2A~ V~ 

obviously satisfies 

and 

(7.2b) 

Vx = V A ( z )  (7.3) 

V,~V '~ = 0 (7.4) 

(7.5) 

al l  {A~} = 0  (7.6b) 

Furthermore,  for an arbitrary tensor  field TIll that  is a funct ion o f  z, we 
have in virtue o f  (7.1), (7.3), and (7.6b) 

V ~ Till = O~ T z  = A ~  ( Till)'  (7.7) 

where the pr ime indicates derivative with respect to z. 

A g r e e m e n t  7.2. The situations stated in (7.1)-(7.5) are called " p r e s e n t  

c o n d i t i o n s "  in our  fur ther  considerations.  
The fol lowing sequence o f  theorems will be proved under  present 

condit ions.  

T h e o r e m  7.3. Under  present condit ions we have 

(P)k ~" = qb p-2+~ (2-e)kA" (p  = 1, 2, 3 , .  �9 .) (7.8a) 

[ ~s O, t = O, g ~ 0 (7.6a) 
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(2)kX~, = 2~bA (x V") _ OA;~A " (7.8b) 

01 if p is even (7.9) 
e = if p is odd  

P r o o f  In virtue of  (7.4), (7.5), and (2.13), we can derive the relation 
(7.8b) as follows: 

(2)k~ = k ~ k "  = ( A ~ V  ~ - A ~ V ~  ) ( A ~ V  ~ - A~V~)  

= 2q~A (~ V") _ OA~A ~ 

The assertion (7.8a) will be proved by induct ion on p. In virtue of  (7.5) 
and (7.8b), it can be easily seen that (7.8a) holds for  p = 1, 2. Now, assume 
that (7.8a) holds for  an arbitrary p. Then,  according to the inductive 
hypothesis ,  the following relation holds for  q = p  + 1: 

(q)k ;~" = (p)kA~ 

= ~bp-2+~ (2-~>kA~k~ = (~p -2+e  (3-~)k,~, 

_ ~q~p-2 (3)kX, = q~pkav = q~q-lka~, if  p is even 

-- t ~/~p--1 (2)kAY = (~q-2 (2)kAy if  p is odd 

or equivalently 

e , = ~ 0  if q is even (q)kxu = ~q-2+e' (2-e')kX~; 
L1 if  q is odd 

This shows that our  assertion (7.8a) holds for  q = p  + 1. �9 

R e m a r k  7.4. Note  in part icular  that 

( P ) k  ~" ~- ~bP-2(2~bA (x V " ) -  OAXA ") when p is even 

Theorem 7.5. Under  present  condit ions we have 

g *h a" = I~ ,_2+~h~"+a (2)kX" 

where 

(7.10) 

(7.11) 

n-4+o- 
a = S ~ b"-4+~ P/s (7.12) 

p=O 
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Proof. In virtue of (2.15), (2.33a), (7.10), and (7.12), our assertion follows: 

g * h a" = / ~ . - 2 + , r  hxu + / ~ . - 4 + , r  (2)kX~ + / ~ n - - 6 + c r  (4)kX~ + '  �9 �9 + / ~ 2  ( . - 4 + o - ) k X .  

+/~o ("-2+'~)k;~ 

- -  R,-2+,~ hx~ + ( / ~ n - - 4 + o -  + / ~ n - 6 + o - ( a  2"{- " " " " J - / ~ 2 ( a  n - 6 + ~  

=/(._2+~h '~ + a (2)k~ �9 

Theorem 7.6. Under present conditions we have 

Xx = NA~ (7.13) 

where 

(a'(Ro_~+~+ a6  2 ) 
N = (7.14) 

g ( 1 - n )  

Proof. In virtue of  (7.5) and (7.7), it follows from (2.26) that 

1 1 
X~ - n - 1  *h~t3V~k~ - n - 1  * h ~ A ~ (  A~V'A - A ~  V~ ) 

which is equivalent to 

g ( n - 1 ) X ~  = ~t~._2+,~h~t~ + a (2 ) k~ )A ,~ (A~V '~ -  A~ V'~) 

= - (a ' ( I ( , -2+~+ a(a2)Ax 

in virtue of (7.4) and (7.11). Our assertion immediately follows from the 
above equation. �9 

Theorem 7. 7. Under present conditions we have 

A ~ X  ~ = A~S  ~ = 0 (7.15a) 

V~X ~ = (aN (7.15b) 

U~ = (a N A ,  (7.15c) 

V,,Sx = (1 - n ) N ' A z A A ,  V , U x  = ( ( a N ) ' A , A x  (7.15d) 
oL 

V~ U~,x = 2( (aN) 'A~Aa (7.15e) 

K2 = _(a2 (7.15f) 

Proof  The assertions in this theorem are direct consequences of  (7.4), 
(7.5), (7.7), and (7.13). In the following we give the proof  of (7.15e) making 
use of A,~k~ = (aA,, and a ~ ( k ~ ) ' =  (a'A,,: 

~t ~ t~ ot v t 7,~ U~,x = O~ U~,, = a,,  (k~,Xa + kx X u) = 2((aN) A,.A, �9 
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Theorem 7.8. A necessary and sufficient condition for the tensor field 
gx, under present conditions to satisfy the field equation (6.1b) is that ~b 
is a solution of 

( 1 - n - ~ ) N ' - ~ b ' N + [ 3 C b 3 + 2 ( n - 1 ) ~ b + l - n ] N 2 = O  (7.16) 

Proof This assertion follows from (6.1b) in virtue of (7.15). �9 

Theorem 7.9. If  equation (7.16) admits a solution ~b, the n-dimensional 
SE connection F : ,  under present condition that satisfies the field equations 
(6.1) is given by 

F ~  = 2 N ~  A~) + 2N(  VVA~, - A~V~)A~)  (7.17) 

Proof This assertion follows from (2.25) in virtue of (7.5), (7.6b), and 
(7.13). �9 

Remark 7.10. Let b and c be arbitrary functions of  z with at least the 
first two derivatives with respect to z. Taking the vector Va as 

) V~ = (b2+ c2)~/2, (b2+ c2)~/2, O, 0, .  �9 z (7.18a) 

we have 

= z, 4 , '=  1, 0 = 0 (7.15b) 

After a lengthy computation,  we can prove that ~b = z is a solution of (7.16). 
Hence, we conclude that the set of  fields ga, under present conditions that 
satisfy the field equations (6.1) is not an empty set. 

Remark 7.11. Hlavat2~ (1954) displayed a particular solution of the 
Einstein connection F~, that satisfies the field equations (2.9) when n = 4. 
Instead of  the conditions (7.4) imposed on the vector Va, he gave the 
conditions 

A~A ~ = A ~ V  ~= V~V ~ - 1  = 0  (7.19) 

However, in our SE manifold SEX4 the conditions (7.19) lead to Xx = 0, a 
contradiction to (6.2), and they give no results. Therefore, we need to 
construct a new systems of the tensor field g~, under present conditions. 
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